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Supplementary tables

Supplementary table 1: Characteristics of the patients in the different cohorts used in this
study. Number of patients with a specific characteristic are shown. The percentages in
brackets represent the number of patients with this specific feature out of all patients for
which this information was available. Validation2_Eagle is the dataset published by Eagle et
al. in 2015 1. The type of treatment regiments the patients had received at any time between
diagnosis and sample collection was available to us for the discovery cohort for which 17
patients had been treated with chemo-immunotherapy, while 6 patients had received
treatment with novel agents (rituximab + idelalisib or ibrutinib). Median time between last
pretreatment and sample collection was 17 months, with 33 % of patients having received
prior treatment within the last year and 79 % of patients within the last three years. Specific
treatment information was not available for Validation1_DIA, Validation2_Eagle and
Validation3_RNA. Validation4_untreated had not received prior treatment. The
Validation5_ibrutinib cohort had uniformly been treated with ibrutinib.
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Supplementary table 2: Time from diagnosis to sample collection for the different cohorts
used in this study. Number of patients are shown. Percentages are indicated in brackets and
are in relation to all patients for which this information was available. Sampling was
performed at the time of diagnosis of all patients in Validation4_untreated cohort. For
Validation5_Ibrutinib this information was not available.
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Supplementary figures

Supplementary figure 1: a, Overview of the single nucleotide (red, SNV) and copy number
variants (yellow, CNV) in the discovery cohort of 68 CLL patients. Grey areas indicate
missing values. b, Distributions of IGHV, treatment status, the copy number alterations
trisomy 12, del(11)(q22.3), del(13)(q14) and del(17)(p13), and the presence of TP53
mutations in the 165 CLL patients of the Validation1_DIA cohort. c, Analysis of differential
protein abundances for recurrent SNVs, CNVs, IGHV and treatment status using limma.
FDR rates of 0.1 % and 5 % are color-coded. d, Number of significantly differentially
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abundant proteins (FDR 5%; |log2FC| >0.5) and e, differentially expressed genes (FDR 5%;
|log2FC| >1.5) in relation to recurrent genetic alterations; red/positive numbers =upregulated,
blue/negative numbers =downregulated. Source data are provided as a Source Data file.
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Supplementary figure 2: a, Effect of different copy-number variations on protein
abundances. Normalized protein abundance for the chromosomes affected by the alterations
are shown. Points represent individual values for protein - patient pairs. Lines are locally
weighted scatterplot smoothed values for individual patients with (red) or without (blue) the
alteration. The box is the region affected by the alteration. Regions with altered copy number
tended to have altered protein abundances. b, Effect of different copy-number variations on
gene expression. Normalized gene expression levels for the chromosomes affected by the
alterations are shown. Points represent individual values for gene - patient pairs. Lines are
locally weighted scatterplot smoothed values for individual patients with (red) or without
(blue) the alteration. The box is the region affected by the alteration. Regions with altered
copy number tended to have altered transcript abundances. c, ATM protein (** p =0.001) and
transcript levels (not significant p =0.17) in ATM mutated (mut, n = 9 Protein or n = 8 RNA
biologically independent patient samples) and wild-type (wt, n = 58 Protein or n = 50 RNA
biologically independent patient samples) CLL samples; two-sided Wilcoxon signed-rank
test. d, XPO1 protein (** p =0.004) and transcript levels (not significant p =0.18) in XPO1
mutated (mut, n = 3 Protein or n = 3 RNA biologically independent patient samples) and
wild-type (wt, n = 64 Protein or n = 55 RNA biologically independent patient samples) CLL
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samples; two-sided Wilcoxon signed-rank test. All boxplots are represented as first and third
quartiles with a median in the center. Whiskers are defined as 1.5 times the interquartile
range. Source data are provided as a Source Data file.

Supplementary figure 3: Hazard ratios from Cox regression for overall survival (OS) with
genes and proteins in Validation1_DIA dataset with strong weights for LF1 and LF2 in the
discovery cohort. P-values (Wald test) are shown on the right. Significant associations
(p <0.05) are colored in blue. Mean and 95 % confidence intervals are shown. Out of the
proteins with strongest weights on LF9, none were detected in the DIA dataset. n = 158
biologically independent patient samples. Univariate cox proportional hazards regression
model. Wald test was used to calculate p-values. Source data are provided as a Source
Data file.
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Supplementary figure 4: a, Cumulative distribution function as produced by the
ConsensusClusterPlus package on the proteomics dataset for a number of up to ten
clusters. b, Tracking plot of clusters as produced by the ConsensusClusterPlus package on
the proteomics dataset for a number of up to ten clusters. c, t-SNE of proteomics data color
coded by Proteomics Groups (PG). d, Principal component analysis of proteomics data color
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coded by PG. e, Responses of Proteomics Groups (PG) to the individual drugs tested in the
ex-vivo drug sensitivity screen. Significance of effects was tested by two sided t-tests against
the viability of cells in the control condition. Source data are provided as a Source Data file.
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Supplementary figure 5: a, Enrichment plot for the KEGG pathway “B-cell receptor
signaling” for differentially abundant proteins in ASB-CLL. b, Mean protein abundance of
proteins in KEGG pathway “B-cell receptor signaling” across PGs. The comparison of 12
biologically independent ASB-CLL samples with the other 56 biologically independent PG
samples is shown. c, Percentages, normalized to solvent control, of alive cells CLL samples
of the discovery cohort in co-culture with the human bone marrow stroma cell line HS-5,
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treated ex-vivo with ibrutinib (40 nM). The comparison of 12 biologically independent
ASB-CLL samples with the other 56 biologically independent PGs samples is shown;
two-sided Wilcoxon signed-rank test. d, Enrichment plot for the KEGG pathway “Valine,
leucine and isoleucine degradation” for differentially abundant proteins in ASB-CLL. e, Mean
protein abundance of proteins in KEGG pathway “Valine, leucine and isoleucine
degradation” (here termed branched chain amino acid (BCAA) degradation) across PGs.
The comparison of 12 biologically independent ASB-CLL samples with the other 56
biologically independent PG samples is shown. f, Enrichment plot for the KEGG pathway
“Proteasome” for differentially abundant proteins in ASB-CLL. g, Mean protein abundance of
proteins in KEGG pathway “Proteasome” across PGs. The comparison of 12 biologically
independent ASB-CLL samples with the other 56 biologically independent PG samples is
shown. h, Enrichment plot for the KEGG pathway “Spliceosome” for differentially abundant
proteins in ASB-CLL. i, Mean protein abundance of proteins in KEGG pathway
“Spliceosome” across PGs. The comparison of 12 biologically independent ASB-CLL
samples with the other 56 biologically independent PG samples is shown. All significance
tests are two-sided and all boxplots are represented as first and third quartiles with a median
in the center. Whiskers are defined as 1.5 times the interquartile range (applies to b, c, e, g
and i). Source data are provided as a Source Data file.
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Supplementary figure 6: a, Cumulative density distribution of protein-mRNA Spearman’s
rank correlations for KEGG components of the spliceosome (red) in comparison to all other
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proteins (gray). A two-sided Kolmogorov-Smirnov test was used to determine the p-value.
b, SF3B1 log2 protein abundances in ASB-CLL (n = 12) vs. all other groups (n = 56). c,
SF3B1 log2 protein abundances in SF3B1 mutated (mut, n = 6) vs. wild-type (wt, n = 61)
samples. SF3B1 protein levels were independent of SF3B1 mutations. d, SF3B1 mutated
CLL showed an increase in the percent-spliced-in (PSI) value of the poison exon (PE) in
BRD92. e, BRD9 log2 protein abundances in SF3B1 mutated (mut, n = 6) vs. wild-type (wt, n
= 61) CLL. f, ASB-CLL did not show altered PSI value of the poison exon in BRD9. g, BRD9
log2 protein abundances in ASB-CLL (n = 12) vs. all other groups (n = 56). h, Mutations in
genes relevant for splicing in ten ASB-CLL patients, as detected by whole exon sequencing.
i, Mean PSI value per patient calculated from the 1000 most variable 3’ alternative splice site
(A3SS), 5’ alternative splice site (A5SS), skipped exon (SE), retained introns (RI), and
mutually exclusive exon (MXE) events across all patients of the discovery cohort. ASB-CLL
patients (n = 8) are compared to non-ASB-CLL patients (n = 50). Comparisons using a
two-sided Wilcoxon signed rank test. Boxplots are represented as first and third quartiles
with a median in the center. Whiskers are defined as 1.5 times the interquartile range
(applies to b, c, e, g and i). j, Number of differential alternative splicing events in a
comparison between the specified proteomics group and all other groups for the same event
types as mentioned in panel i (n = 58). Darker (lighter) shades correspond to events for
which the mean PSI value in the named group is larger (smaller) than that of all other
groups. Source data are provided as a Source Data file.
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Supplementary figure 7: Heatmap of relative protein abundances for proteins detected by
DIA in the BcR and spliceosome pathways (KEGG). Related to figure 6. Patients are
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grouped according to predicted membership in the ASB-CLL group: light grey, left =
discovery cohort, not ASB–CLL; dark grey = validation cohort, predicted not ASB-CLL; light
purple = discovery cohort, ASB-CLL; dark purple = validation cohort, predicted ASB-CLL.
Source data are provided as a Source Data file.
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Supplementary figure 8: a and b, Violin plots of branched chain amino acid (BCAA) protein
abundances (a) and proteasomal protein abundances (b) comparing the subgroup identified
as ASB-CLL in the Validation1_DIA dataset (n=28) to all other patients (n=134). c, Overall
survival (OS) of untreated patients in the discovery and Validation1_DIA cohorts, divided into
ASB-CLL and all other patients. d-g, Boxplots of B cell receptor (BcR) signaling protein (d),
spliceosomal protein (e), BCAA protein (f) and proteasomal protein (g) abundances in the
subgroup identified as ASB-CLL (n = 5 patient samples) in the Validation2_Eagle cohort, in
comparison to all other patients (n = 13 patient samples). Comparison using a two-sided
Wilcoxon signed rank test. Boxplots are represented as first and third quartiles with a median
in the center. Whiskers are defined as 1.5 times the interquartile range (d-g). Source data
are provided as a Source Data file.
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Supplementary figure 9: a, Heatmap of p-values for selected enrichment terms for the
modularity defined clusters N1-N6 in Fig. 7c. b, Visualization of the log2 mean, relative
protein levels from the Validation1_DIA dataset for patients grouped by IGHV status and
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trisomy 12 status. Proteins not found in the DIA-dataset are colored grey. (M-CLL, tris12+
n= 14; M-CLL, WT, n= 89; U-CLL, tris12+, n= 6; U-CLL, WT, n= 46), c, Percentages,
normalized to solvent control, of alive cells CLL samples of the discovery cohort in co-culture
with the human bone marrow stroma cell line HS-5, treated ex-vivo with idelalisib (9 µM),
ibrutinib (40 nM) or duvelisib (4.5 µM). 17 biologically independent trisomy12 patient samples
(Tris12M-PG, n =9; Tris12U-PG, n=8) were compared to 51 non-trisomy12 biologically
independent patient samples (M-PG, n=18; U-PG, n=17, ASB-CLL, n=12; TP53-PG, n=4)
using a two-sided Wilcoxon signed rank test. Boxplots are represented as first and third
quartiles with a median in the center. Whiskers are defined as 1.5 times the interquartile
range. d, GSEA analysis results using the KEGG database for protein level differences
between U-CLL and M-CLL in the context of trisomy 12. Data was adjusted for differences
between U-CLL and M-CLL in cases with disomy 12 (WT). Leading edge genesets with
significantly different protein-mRNA correlations are highlighted (red circle = significantly
higher correlation, blue circle = Significantly lower correlation) e, Volcano plot of DeqMS
analysis results of protein level differences between U-CLL and M-CLL in the context of
trisomy 12. Data was adjusted for differences between U-CLL and M-CLL in cases with
disomy 12 (WT). Genes from the B cell receptor signaling pathway are highlighted in yellow.
f, Heatmap of log2 peptide abundances for selected phosphorylated BcR peptides. Patients
were grouped according to PG. g, Time to progression of patients uniformly treated with
ibrutinib as first line treatment (Validation5_ibrutinib), stratified into groups by IGHV mutation
status and trisomy 12 (tris12). h, Time to progression of pretreated patients uniformly treated
with ibrutinib (Validation5_ibrutinib), stratified into groups by IGHV mutation status and
trisomy 12 (tris12). Source data are provided as a Source Data file.
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Supplementary Methods

IGHV status analysis

RNA was isolated from 1x107 PBMCs using TRIZOL reagent (Thermo Fisher Scientific)
according to manufacturer's instructions. cDNA was synthesized from 2 µg RNA using
High-capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific) according to
manufacturer's instructions. PCR reactions as well as the analyses were performed with
minor modifications3. For PCR reactions AmpliTaq Gold DNA polymerase (Thermo Fisher
Scientific) with 0.2 µM of each primer and 0.2 mM of each dNTP was used. VH1-, VH3- and
VH4- segments were amplified in single reactions whereas primers for VH2, VH3-21, VH5 as
well as VH6-segments were run in a multiplex PCR reaction as described 3. PCR program
was as follows: initial denaturation at 94 °C for 2 minutes, followed by 40 cycles of
denaturation (94 °C, 20 seconds), annealing (52 °C, 10 seconds) and elongation (72 °C,
30 seconds) and a final elongation step of 2 minutes at 72 °C. PCR products were sent for
Sanger Sequencing (GATC Biotech) using the appropriate forward and the JH-1 reverse
primer for the sequencing reaction. In the multiplex PCR reaction both JH-rev as well as
JH-1 rev were used for sequencing. After sequencing forward and reverse sequencing
results were aligned. To determine the closest matching germline VH-sequence as well as
the mutation status, i.e. the percentage of sequence identity, of the VH-segment determined
the IMGT/V-Quest-Database was used. The primers for individual PCRs were as follows:
PCR1: VH1, JH, JH-1; PCR2: VH3, JH, JH-1; PCR3: VH4, JH, JH-1; PCR4: VH2, VH3-21,
VH5, VH6, JH, JH-1 3.

Supplementary table 3: Primers used for the determination of the IGHV status. Also see
reference 3

VH1 5′-CACCATGGACTGGACCTGGA-3′

VH2 5′-ATGGACACACTTTGCTCCAC-3′

VH3 5′-CCATGGAGTTTGGGCTGAGC-3′

VH3-21† 5′-CCATGGAacTgGGGCTccGC-3′

VH4 5′-ATGAAACACCTGTGGTTCTT-3′

VH5 5′-ATGGGGTCAACCGCCATCCT-3′

VH6 5′-ATGTCTGTCTCCTTCCTCAT-3′

JH 5′-ACCTGAGGAGACGGTGACCAGGGT-3′

JH-1 5′-ACCTGAGGAGACGGTGACC-3′
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Panel sequencing of CLL samples
For gene mutation analysis of CLL candidate genes we designed a customized Illumina™
TruSeq Custom Amplicon (TSCA) panel with two independent primer sets for a redundant
coverage of NOTCH1, SF3B1, ATM, TP53, RPS15, BIRC3, MYD88, FBXW7, POT1, XPO1,
NFKBIE, EGR2 and BRAF 4. For ATM, BIRC3, EGR2, FBXW7, MYD88, NFKBIE, POT1 and
TP53 the full gene was covered. For BRAF (exons 11-18), NOTCH1 (exon 34 +3’UTR),
RPS15 (exons 3-4), SF3B1 (exons 14-16) and XPO1 (exons 14-17) the most commonly
affected exons were covered. The selection of these targets comprises the 11 most
frequently mutated genes in CLL identified via unbiased whole exome sequencing of 528
CLL patients 5. Library preparation was performed using TruSeq Custom Amplicon Assay Kit
v1.5 including extension and ligation steps between custom probes. Samples were indexed,
pooled and loaded on an Illumina MiSeq flowcell in 32 sample batches.

The cumulative target size was 41,352 basepairs (bp) covered with 304 amplicons in each
panel with an amplicon length up to 250 bp. Adjacent 5 intron bp were included to cover
splice site mutations. Input of 250 ng DNA from peripheral blood mononuclear cells was
sufficient for libraries according to the Illumina TSCA protocol.

We used a custom bioinformatics pipeline including BWA and Samtools (alignment; 6), and
Varscan (variant calling and annotation; 7). Current databases (COSMIC 8, 1000G 9,
dbSNP145 10, ClinVar 11) were taken into consideration to evaluate and report variants above
a threshold of 5 % mean variant allele fraction (VAF) as pathogenic/non pathogenic. Only
mutations which occurred in at least three patients and an allele frequency of more than
20 % were considered for further analyses.

In-depth data dependant acquisition mass spectrometry proteomics
using HiRIEF

Cell pellets were dissolved in Lysis buffer (4 % SDS, 50 mM HEPES pH 7.6, 1 mM DTT),
heated to 95° C and sonicated. The total protein amount was estimated (Bio-Rad DC).
Samples were then prepared for mass spectrometry analysis using a modified version of the
SP3 protein clean-up and a digestion protocol 12,13, where proteins were digested by LysC
and trypsin (sequencing grade modified, Pierce). In brief, up to 250 µg protein from each
sample was alkylated with 4 mM Chloroacetamide. Sera‐Mag SP3 bead mix (20 µl) was
transferred into the protein sample together with 100 % Acetonitrile to a final concentration of
70 %. The mix was incubated under rotation at room temperature for 18 min. The mix was
placed on the magnetic rack and the supernatant was discarded, followed by two washes
with 70 % ethanol and one with 100 % acetonitrile. The beads-protein mixture was
reconstituted in 100 µl LysC buffer (0.5 M Urea, 50 mM HEPES pH: 7.6 and 1:50 enzyme
(LysC) to protein ratio) and incubated overnight. Finally, trypsin was added in 1:50 enzyme to
protein ratio in 100 µl 50 mM HEPES pH 7.6 and incubated overnight. The peptides were
eluted from the mixture after placing the mixture on a magnetic rack, followed by peptide
concentration measurement (Bio-Rad DC Assay). The samples were then pH adjusted using
TEAB pH 8.5 (100 mM final conc.), 65 µg of peptides from each sample were labelled with
isobaric TMT-tags (TMT10plex reagent) according to the manufacturer’s protocol (Thermo
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Scientific). Each set consisted of 9 individual patient samples and the tenth channel
contained the same sample pool in each set, consisting of a mixture of patient samples.
Sample pools were used as denominators when calculating TMT-ratios and thus served to
link the 8 sets together.

Of note, the labelling efficiency was determined by LC-MS/MS before pooling of the
samples. After pooling samples, a solid phase extraction (SPE strata-X-C, Phenomenex)
was performed and purified samples were dried in a SpeedVac. An aliquot of approximately
10 μgwas suspended in LC mobile phase A and 1 μg was injected on the LC-MS/MS
system.

The tryptic peptides for each pooled set (325 µg) were separated by immobilized pH gradient
- isoelectric focusing (IPG-IEF) on 3–10 strips14. Briefly, dried peptides were solubilized in
250 µl of 8M Urea with 1% Pharmalyte pH 3-10 (GE Healthcare) and left to soak into a 3-10
isoelectric focusing gel strip overnight. Gel strips were then focused in an Ettan IPGphor for
at least 48 hours (>150 000 Vh). During the first 5 hours the voltage was slowly ramped up
to 8000 V and then kept there for the duration of the focusing.

After focusing the peptides were eluted from the gel strips into distinct fractions by placing a
72 well comb over the gel strip and eluting peptides with 3 rounds of elution: first water only,
then 40% ACN and last 40% ACN, 0.1% FA. Eluted fractions were dried and stored at -20
degrees until MS-analysis.

For a detailed description and step-by-step guidelines see 15

Online LC-MS was performed14,16 using a Dionex UltiMate™ 3000 RSLCnano System
coupled to a Q-Exactive-HF mass spectrometer (Thermo Scientific).

Each of the 72 plate wells was dissolved in 20 µl solvent A and 10 µl were injected. Samples
were trapped on a C18 guard-desalting column (Acclaim PepMap 100, 75 μm x 2 cm,
nanoViper, C18, 5 µm, 100 Å), and separated on a 50 cm long C18 column (Easy spray
PepMap RSLC, C18, 2 μm, 100 Å, 75 μm x 50 cm). The nano capillary solvent A was 95 %
water, 5 % DMSO, 0.1 % formic acid; and solvent B was 5 % water, 5 % DMSO, 95 %
acetonitrile, 0.1 % formic acid. At a constant flow of 0.25 μl min−1, the curved gradient went
from 6-8 % B up to 40 % B in each fraction in a dynamic range of gradient length (see
supplementary table 4), followed by a steep increase to 100 % B in 5 min. FTMS master
scans with 60,000 resolution (and mass range 300-1500 m/z) were followed by
data-dependent MS/MS (30 000 resolution) on the top 5 ions using higher energy collision
dissociation (HCD) at 30 % normalized collision energy. Precursors were isolated with a
2 m/z window. Automatic gain control (AGC) targets were 1e6 for MS1 and 1e5 for MS2.
Maximum injection times were 100 ms for MS1 and 100 ms for MS2. The entire duty cycle
lasted ~2.5 s. Dynamic exclusion was used with 30 s duration. Precursors with unassigned
charge state or charge state 1 were excluded. An underfill ratio of 1 % was used.

Protein and peptide identification and quantification was carried out as previously described
14,16. Briefly, Orbitrap raw MS/MS files were converted to mzML format using msConvert from
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the ProteoWizard tool suite . Spectra were then searched using MSGF+ (v10072) and
Percolator (v2.08) , where search results from 8 subsequent fractions were grouped for
Percolator target/decoy analysis. All searches were done against the human protein subset
of Ensembl 75 in the Galaxy platform. MSGF+ settings included precursor mass tolerance of
10 ppm, fully-tryptic peptides, maximum peptide length of 50 amino acids and a maximum
charge of 6. Fixed modifications were TMT-10plex on lysines and peptide N-termini, and
carbamidomethylation on cysteine residues; a variable modification was used for oxidation
on methionine residues. Quantification of TMT-10plex reporter ions was done using OpenMS
project's IsobaricAnalyzer (v2.0). PSMs found at 1 % FDR (false discovery rate) were used
to infer gene identities.

Protein quantification by TMT10plex reporter ions was calculated using TMT PSM ratios to
the entire sample set (all 10 TMT-channels) and normalized to the sample median. The
median PSM TMT reporter ratio from peptides unique to a gene symbol was used for
quantification. Protein false discovery rates were calculated using the picked-FDR method
using gene symbols as protein groups and limited to 1% FDR.
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Supplementary table 4: Table describing dynamic LC gradient lengths used for analysis of
individual HiRIEF fractions by LC-MS/MS.
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Mass Spectrometry - DIA-based proteomics

Each sample was dissolved in 200 µl lysis buffer (25 mM HEPES pH 7.6, 4 % SDS, 1 mM
DTT), heated at 90° C for 5 min and sonicated for 1 min. The total protein amount was
estimated (Bio-Rad DC). Samples were then prepared for mass spectrometry analysis using
a modified version of the SP3 protein clean-up and a digestion protocol 12,13, where proteins
were digested by LycC and trypsin (sequencing grade modified, Pierce). In brief, 200 µg (or
the entire amount if <200 µg protein was available) from each sample was alkylated with
4 mM Chloroacetamide. Sera‐Mag SP3 (GE Healthcare products 45152105050250 and
65152105050250, distributed by Thermo Fisher) bead mix (20 µl) was transferred into the
protein sample together with 100% Acetonitrile to a final concentration of 70 %. The mix was
incubated under rotation at room temperature for 20 min. The mix was placed on the
magnetic rack and the supernatant was discarded, followed by two washes with 70 %
ethanol and one with 100 % acetonitrile. The beads-protein mixture was reconstituted in
100 µl LycC buffer (0.5 M Urea, 50 mM HEPES pH: 7.6 and 1:50 enzyme (LycC) to protein
ratio) and incubated overnight. Finally, trypsin was added in 1:50 enzyme to protein ratio in
100 µl 50 mM HEPES pH 7.6 and incubated overnight. Peptide concentration was measured
using Bio-Rad DCC.

50 μg of peptides from each sample were cleaned by SP3 beads. For that, peptides were
dried by SpeedVac, and dissolved in 20 µl water. 10 µl beads were added to each tube and
mixed by short vortex. 570 µl acetonitrile was added to each sample to reach 95 % ACN. The
mixture was incubated for 30 minutes at room temperature. To remove the buffer, the tube
was placed on a magnetic rack and incubated for 2 minutes at room temperature.
Supernatant was discarded. Magnetic beads were washed by addition of 250 μl of
acetonitrile and incubated for 30 seconds on the magnetic stand. Supernatant was discarded
and the beads air-dried. Tryptic peptides were detached from the beads by addition of 100 μl
of 3 % ACN, 0.1 % FA and transferred to a new tube.

5 μg of peptides from each sample were injected and separated using an Ultimate 3000
RSLCnano system coupled to a Q Exactive HF (Thermo Fischer Scientific, San Jose, CA,
USA). Samples were trapped on an Acclaim PepMap nanotrap column (C18, 3 mm, 100 Å,
75 µm x 20 mm, Thermo Scientific), and separated on an Acclaim PepMap RSLC column
(C18, 2 µm, 100 Å, 75 µm x 50 cm, Thermo Scientific). Peptides were separated using a
gradient of mobile phase A (5 % DMSO, 0.1 % FA) and B (90 % ACN, 5 % DMSO, 0.1 % FA),
ranging from 6 % to 30 % B in 180 min with a flow of 0.25 ml/min.

For data independent acquisition (DIA), data was acquired using a variable window strategy.
The survey scan was performed at 120,000 resolution from 400-1200 m/z, with a max
injection time of 200 ms and target of 1e6 ions. For generation of HCD fragmentation
spectra, max ion injection time was set as auto and AGC of 2e5 were used before
fragmentation at 28 % normalized collision energy, 30,000 resolution. The sizes of the
precursor ion selection windows were optimized to have similar density of precursor m/z.
The median size of windows was 18.3 m/z with a range of 15-88 m/z covering the scan
range of 400-1200 m/z. Neighbor windows had a 2 m/z overlap.
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For protein identification and quantification, all raw files analyzed by Spectronaut using the
Direct-DIA option without the use of a spectral library, files were searched against ENSEMBL
protein database (GRCh38.98.pep.all.fasta). All parameters were kept as default for protein
identification. Briefly, runs were recalibrated using iRT standard peptides in a local and
non-linear regression. Precursors, peptides and proteins were filtered with FDR 1 %. The
decoy database was created by mutation method. For quantification, only peptides unique to
a protein group were used. Protein groups were defined based on gene symbols to obtain a
gene symbol centric quantification. Stripped peptide quantification was defined as the top
precursor quantity. Protein group quantification was calculated by the median value of the
top 3 most abundant peptides. Quantification was performed at the MS2 level based on the
peak area. The quantitative values were filtered using the qvalue for each sample.
Imputation was not performed at any stage of the quantification data generation.

Protein-protein correlation

Protein complex analysis

Protein core complex information was retrieved from the CORUM website
(http://mips.helmholtzmuenchen.de/corum/#download). All complex members were assumed
to interact with each other. Protein complex information was converted into a pairwise
interaction matrix as previously described 16. The distribution of correlations between
proteins/genes in known complexes in both the transcriptomics and proteomics data was
compared to the distribution of correlations between randomly selected protein/gene pairs.

For the investigation of trisomy 12 related complexes, CORUM complexes which contained
genes located on chromosome 12 were kept. The log2-value of the relative median
abundance of individual proteins in the trisomy 12 cases compared to non-trisomy 12 cases
was calculated and complexes with an overall upregulation and no down regulated proteins
were kept.

Protein-protein interaction network

In order to identify a protein population with high standard deviation across the samples, we
first calculated a modified quantile standard deviation for the log ratios of each full-overlap
protein. Therefore, the lowest and highest value was discarded. The distribution of all log
quantile standard deviations was then modelled with a mixture of two Gaussian distributions
by applying an expectation maximization algorithm (R package mixtools). The converged
model with the two underlying distributions was assumed to represent unmodulated and
modulated proteins.

Next, we determined the log standard deviation cutoff that optimally separated the
modulated from the unmodulated protein population. We probed each percentile as a cutoff
for the mixed distributions, calculated the true and false positive rates and averaged the
values over ten consecutive runs. The log standard deviation cutoff was selected by
optimising the number of true positive minus false positive modulated proteins, eventually
rounded to the lower .5 to ensure reproducibility.
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Pairwise Pearson correlations between each modulated protein were calculated. In a
QQ-plot, we compared our values to a hypothetical normal distribution and roughly set a
cutoff where correlation coefficients started to deviate from the diagonal, which was at
r = 0.5. All correlations equal or greater than this were translated into edges between protein
nodes in an initial protein-protein-interaction network (github code: “ppi_network”). The
network was visualized in Gephi 0.9.2. The initial number of nodes (n =1801) were filtered
using a Kcore setting of 3 and above and the core network of 1047 nodes was used for
further analysis. Modularity clustering of the nodes was carried out with a resolution of 0.8.

Annotation of the modularity clusters was done by first extracting all proteins belonging to a
cluster. Next, any protein in the full overlap dataset (n =7313) that had a Pearson correlation
above 0.7 to any of the cluster members was included in the target gene set for that cluster.
Enrichment using a target-background approach was carried out against the MSigDB
categories Hallmark, C1, C2, C5 and C6. The full overlap data set (n =7313) was used as
background and the R packages msigdbr and ClusterProfiler were used to calculate
enrichments (github code: “enrichment_of_network-msigdb”).

Analysis of differential splicing

RNA level

Due to its short computational time the julia-based tool whippet 17 was used for visualisation
of specific splicing events, as shown in Fig. S6, following the recommended workflow. In
brief, an index was created from the human reference genome (GRCh37). Fastq files were
quantified using the options for single-end reads. ASB-CLL was compared to all other
samples, or SF3B1 mutated samples were compared to wt samples, by using the
whippet-delta functions and setting the parameters of -r to 20 and -s to 3. For visualisation
delta percent-spliced-in values were plotted in R.
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